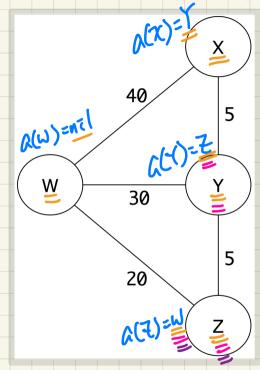

Lecture 16 - Nov 10

<u>Graphs</u>


Dijkstra's Algorithm: Tracing
Dijkstra's Algorithm: Pre- and Post-cond.

Announcements/Reminders

- Today's class: notes template posted
- Test 1 results released on Tuesday (Nov 4)
- Change of Dates:
 - + Assignment 2 to be released on Wed, Nov 12
 - + Assignment 2 to be due on Wed, Nov 19
 - + Test 2 to be take place on Mon, Nov 24

Upon termination of Dejkstras algorithm

dest.	ancestor poth.
<u>x</u>	XYZW
Ī	Y Z W
7	7 W
dest.	shortest path (fom source W)
X	WZYX
Y	$\omega \neq \gamma$

programming statements. Correctness of Loops: Syntax Precondition Precondition void myAlgorithm() { **Violation** assert Q; /* Precondition */ S_{init} S_{init} while (B) assert I; /* Is LI established? */ while(B) { Loop Spody S_{body} Invariant assert I; /* Is LI preserved? */ **Violation** {**R**} assert R; /* Postcondition */ postandippin. $\neg B \land \neg R$ **Postcondition Violation** is B: stay condition
7 B: exit condition. S_{body} * Initialization/Reparation for therations. 4x Ax long as B is true, execute I rody another Ax soon as B is take, exit from the bop. $\neg B \land R$

precondition: $\frac{W(N,N) \geq O}{\text{Most negative}} \quad \text{We now negative}$ tait we shortest part of 2. Reverse of Marks the shortest